Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase comparison

While SQL databases are insanely useful tools, their tyranny of ~15 years is coming to an end. And it was just time: I can’t even count the things that were forced into relational databases, but never really fitted them.

In this light, here is a comparison of Cassandra, Mongodb, CouchDB, Redis, Riak and HBase:

CouchDB

  • Written in: Erlang
  • Main point: DB consistency, ease of use
  • License: Apache
  • Protocol: HTTP/REST
  • Bi-directional (!) replication,
  • continuous or ad-hoc,
  • with conflict detection,
  • thus, master-master replication. (!)
  • MVCC – write operations do not block reads
  • Previous versions of documents are available
  • Crash-only (reliable) design
  • Needs compacting from time to time
  • Views: embedded map/reduce
  • Formatting views: lists & shows
  • Server-side document validation possible
  • Authentication possible
  • Real-time updates via _changes (!)
  • Attachment handling
  • thus, CouchApps (standalone js apps)
  • jQuery library included

Best used:
For accumulating, occasionally changing data, on which pre-defined queries are to be run. Places where versioning is important.

For example:
CRM, CMS systems. Master-master replication is an especially interesting feature, allowing easy multi-site deployments.

Redis

  • Written in: C/C++
  • Main point: Blazing fast
  • License: BSD
  • Protocol: Telnet-like
  • Disk-backed in-memory database,
  • but since 2.0, it can swap to disk.
  • Master-slave replication
  • Simple keys and values,
  • but complex operations like ZREVRANGEBYSCORE
  • INCR & co (good for rate limiting or statistics)
  • Has sets (also union/diff/inter)
  • Has lists (also a queue; blocking pop)
  • Has hashes (objects of multiple fields)
  • Of all these databases, only Redis does transactions (!)
  • Values can be set to expire (as in a cache)
  • Sorted sets (high score table, good for range queries)
  • Pub/Sub and WATCH on data changes (!)

Best used:
For rapidly changing data with a foreseeable database size (should fit mostly in memory).

For example:
Stock prices. Analytics. Real-time data collection. Real-time communication.

MongoDB

  • Written in: C++
  • Main point: Retains some friendly properties of SQL. (Query, index)
  • License: AGPL (Drivers: Apache)
  • Protocol: Custom, binary (BSON)
  • Master/slave replication
  • Queries are javascript expressions
  • Run arbitrary javascript functions server-side
  • Better update-in-place than CouchDB
  • Sharding built-in
  • Uses memory mapped files for data storage
  • Performance over features
  • After crash, it needs to repair tables

Best used:
If you need dynamic queries. If you prefer to define indexes, not map/reduce functions. If you need good performance on a big DB. If you wanted CouchDB, but your data changes too much, filling up disks.

For example:
For all things that you would do with MySQL or PostgreSQL, but having predefined columns really holds you back.

Cassandra

  • Written in: Java
  • Main point: Best of BigTable and Dynamo
  • License: Apache
  • Protocol: Custom, binary (Thrift)
  • Tunable trade-offs for distribution and replication (N, R, W)
  • Querying by column, range of keys
  • BigTable-like features: columns, column families
  • Writes are much faster than reads (!)
  • Map/reduce possible with Apache Hadoop
  • I admit being a bit biased against it, because of the bloat and complexity it has partly because of Java (configuration, seeing exceptions, etc)

Best used:
If you’re in love with BigTable. 🙂 When you write more than you read (logging). If every component of the system must be in Java. (“No one gets fired for choosing Apache’s stuff.”)

For example:
Banking, financial industry (though not necessarily for financial transactions, but these industries are much bigger than that.)

Riak

  • Written in: Erlang & C, some Javascript
  • Main point: Fault tolerance
  • License: Apache
  • Protocol: HTTP/REST
  • Tunable trade-offs for distribution and replication (N, R, W)
  • Pre- and post-commit hooks,
  • for validation and security.
  • Built-in full-text search
  • Map/reduce in javascript or Erlang
  • Comes in “open source” and “enterprise” editions

Best used:
If you want something Cassandra-like (Dynamo-like), but no way you’re gonna deal with the bloat and complexity. If you need very good single-site scalability, availability and fault-tolerance, but you’re ready to pay for multi-site replication.

For example:
Point-of-sales data collection. Factory control systems. Places where even seconds of downtime hurt.

HBase

(With the help of ghshephard)

  • Written in: Java
  • Main point: Billions of rows X millions of columns
  • License: Apache
  • Protocol: HTTP/REST (also Thrift)
  • Modeled after BigTable
  • Map/reduce with Hadoop
  • Query predicate push down via server side scan and get filters
  • Optimizations for real time queries
  • A high performance Thrift gateway
  • HTTP supports XML, Protobuf, and binary
  • Cascading, hive, and pig source and sink modules
  • Jruby-based (JIRB) shell
  • No single point of failure
  • Rolling restart for configuration changes and minor upgrades
  • Random access performance is like MySQL

Best used:
Use it when you need random, realtime read/write access to your Big Data.

For example:
Facebook Messaging Database (more general example coming soon)

Of course, all systems have much more features than what’s listed here. I only wanted to list the key points that I base my decisions on. Also, development of all are very fast, so things are bound to change. I’ll do my best to keep this list updated.

Kristof




coded by nessus